TECHNICAL BULLETIN

Mist Eliminator Flooding and the Use of Mesh Pre-Coalescers to Enhance Small Droplet Capture

Fig. 1A: Vertical gas flow with counter-current drainage means lower K-factors and gas velocities are used for sizing and the liquid mist load is limited to avoid flooding

Fig. 1B: Above the flood point, the mist eliminator will not capture any liquid; it will coalesce and re-entrain in the gas flow as larger globules / droplets. This phenomenon is means mesh pads can be used as the first stage in a multi-stage mist eliminator offering better turn-down and/or performance than a single stage:

TECHNICAL BULLETIN

Fig.2A: Horizontal gas flow with cross-flow drainage means design gas velocity and/or liquid loading can be higher

Fig.2B: Above the flood point, the mist eliminator will not capture any liquid; it will coalesce and reentrain in the gas flow as larger globules / droplets. This phenomenon is means mesh pads are often used as the first stage in a mesh+vane combi mist eliminator offering better turndown and/or performance than a single device:

TECHNICAL BULLETIN

Points to consider when deciding whether to use a mesh pre-coalescer before a secondary mist eliminator device include:

Nature of the liquid	If the liquid is very light or of very low surface tension,
	then the re-entrainment velocity (mist eliminator
	capacity and/or efficiency) is likely to be low. This can
	be off-set by the use of multiple devices.
Operating pressure	Typically, separation at high pressure is more
	challenging than at low-intermediate pressure due to
	density and viscosity changes. This can be mitigated
	through the use of multiple devices, or through
	enhanced gravity devices.
Feed velocity / momentum	If the inlet gas momentum is high, then the dispersed
	liquid droplet diameter is likely to be small and more
	difficult to remove. If the liquid is light or the operating
	pressure high, then it will be even more challenging.
	But if the liquid quantity is high, the droplet diameter
	will also be larger meaning easier separation.
Presence of solids or corrosive fluids	This would normally mean that a mesh pre-coalescer
	could be a cause of increased maintenance for cleaning
	or due to corrosion. It can cause a trade-off between
	maintenance and performance.
Operating envelope	Where a narrow operating range is specified (e.g. a
	compression train) then single devices are normally
	adequate; for wide flow ranges the use of multiple
	devices should be considered.
Pressure drop	Additional devices will cause additional pressure drop
	for the lifetime of the vessel. This may be a factor for
	consideration.
Vessel height	Additional disengagement height between the inlet
	distributor and the mist eliminator is used to reduce
	the liquid load on the device and thus improve
	efficiency. This is commonly used where the gas may
	carry solids, allowing the majority to drop out with the
	bulk of the liquid droplets. Or the height may be
	utilised for an additional device. Or the vessel could be
	shorter if these considerations are not needed.
Target performance	For low carryover levels e.g. 0.1 USG/MMSCF or <25
	ppmw in challenging separation environments it may
	be necessary to consider multiple devices. For
	moderate carryover loads e.g. 0.2 to 0.5 USG/MMSCF
	or 50-150 ppmw it may not be necessary. For light duty
	and bulk removal only e.g. to 1 USG/MMSCF or 200-
	300ppmw, multiple mist eliminators are rarely needed.